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Abstract In epidemiological models of infectious diseases the basic reproduction
number R0 is used as a threshold parameter to determine the threshold between dis-
ease extinction and outbreak. A graph-theoretic form of Gaussian elimination using
digraph reduction is derived and an algorithm given for calculating the basic repro-
duction number in continuous time epidemiological models. Examples illustrate how
this method can be applied to compartmental models of infectious diseases modelled
by a system of ordinary differential equations. We also show with these examples how
lower bounds for R0 can be obtained from the digraphs in the reduction process.

Mathematics Subject Classification (2000) 92D30 · 05C50

1 Introduction

In epidemiological models of infectious diseases, the basic reproduction number,
R0, defined as the number of new infections that occur after one initial infective
is introduced into a susceptible population [1], is used as a threshold parameter
to determine the condition for disease outbreaks; see, for example, [7,16,22]. This
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quantity is considered essential in the study of population dynamics of infectious
diseases [14,15,23]. Using the precise definition of R0 given in [10,11], we derive a
graph-theoretic method, analogous to a method developed in [3] for discrete systems,
to compute R0 for continuous time epidemiological models.

In general, for standard epidemiological models, an infection dies out if R0 < 1;
whereas an infection invades a susceptible population if R0 > 1 [16]. For both dis-
crete and continuous time models, R0 can be calculated as the spectral radius of the
next generation matrix [11,19]. This calculation involves several matrix operations
that can be computationally complicated as the number of compartments in the model
increases. The graph-theoretic method we present here allows for calculating R0 more
easily for some complex continuous time epidemiological models.

We begin in Sect. 2 by giving a determinantal formula for R0. Then, in Sect. 3,
we describe the graph reduction procedure for this formula, and use this in Sect. 4 to
give an algorithm to calculate R0. In Sect. 5, we show with examples how the method
is applied to calculate R0 for ordinary differential equation (ODE) epidemiological
models. We conclude in Sect. 6 with a discussion.

2 Basic reproduction number

We first give a formula for determining the basic reproduction number for an ODE
disease transmission model. This is in the same spirit as a formula for the net reproduc-
tive rate for stage structured population models as given in [3,19]. We use the notation
as in [11] for an ODE disease transmission model, which is assumed to have a disease
free equilibrium (DFE) in which all infected variables are zero, and the model without
disease is assumed to be stable.

Consider the ODE system for the infected variables linearized about the DFE, and
write the coefficient matrix as F − V assumed to be irreducible, where F contains
new infection terms and V contains the terms representing transfer between compart-
ments. From [11], F is (entrywise) non-negative, non-zero, and V is a non-singular
M-matrix. Thus, the next generation matrix FV−1 is non-negative and non-zero. The
basic reproduction number R0 is defined as R0 = ρ(FV−1), where ρ denotes the
spectral radius. The DFE is locally asymptotically stable if R0 < 1, but unstable
if R0 > 1 [10,11]. The following result is used for our graph-theoretic method to
compute R0.

Theorem 1 Let F be a non-zero non-negative matrix and V be a non-singular
M-matrix such that F − V is irreducible. Then R0 = ρ(FV−1) > 0 and R0 is the
reciprocal of the smallest positive root x of the polynomial equation det(Fx −V) = 0.

Proof From the assumptions, FV−1 is a non-zero non-negative matrix, and by [19,
Proposition 4.1] and Perron–Frobenius theory the principal submatrix corresponding
to the non-zero rows of F is irreducible. Thus λ = ρ(FV−1) > 0 is the largest positive
root of the polynomial equation det(λI − FV−1) = 0. Since V is non-singular and
λ > 0, the polynomial equation is equivalent to det(Fλ−1 −V) = 0 (where V−Fλ−1

is a singular M-matrix) and λ−1 is the smallest positive root. From the definition of
R0 = ρ(FV−1), the result follows. ��
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To use the above theorem in digraph reduction (Sect. 3) and in computing R0
(Sect. 4), we need to consider Gaussian elimination using row reductions. Let A be an
irreducible n × n singular M-matrix. Then each proper principal submatrix is a non-
singular M-matrix [2, Theorem 4.16], and, in particular, each main diagonal entry of
A is positive. Performing Gaussian elimination successively reducing the j th column
( j = 1, . . . , n − 1) to have the ( j, j) entry equal to 1 and (i, j) entry equal to zero for
i > j . At each step every diagonal entry is positive, whereas at the final reduction step,
the (n, n) entry is zero since A is singular [24, Lemma 4]. With λ = ρ(FV−1), letting
−A = Fλ−1 −V the negative of an irreducible M-matrix, the above discussion shows
that no zero divisor results in the Gaussian elimination on Fλ−1 − V, and that at each
step, other than the last, every diagonal entry is negative. Note that by permutation
similarity, it does not matter in which order the columns are chosen. Since the equation
det(Fλ−1 − V) = 0 gives the same polynomial in λ as det(E(Fλ−1 − V)) = 0 where
E is a product of elementary matrices, the above Gaussian elimination results in a
polynomial equation that gives R0 as in Theorem 1. Such row operations correspond
to reductions in the digraph associated with Fλ−1 − V, which we now describe.

To a real n × n matrix A = (ai j ), there corresponds a labelled directed graph
(digraph) D(A) with nodes 1, 2, . . . , n and a directed edge (arc) j → i if and only if
ai j �= 0 for i, j = 1, 2, . . . , n. The weight of this arc is ai j , and D(A) has a loop at
node i of weight aii if aii �= 0. Note that A completely describes D(A) and conversely.
The correspondence of a digraph with the coefficient matrix of a system of equations
has been pioneered in the engineering literature by [8,21]; see [6, chapter 3] for a
detailed description and further references. For a given A the digraph D(A) described
above is the Coates digraph of A. Note that, given D(A), matrix A is the transpose of
that often used as the weighted adjacency matrix; see, e.g., [13]

Our digraph reduction rules on the Coates digraph of A are now stated. They are
similar of those given in [6]; see also [3,5,21], and are elementary Gaussian elimination
steps. A node with weight −1 is called a trivial node.

3 Reduction on digraph associated with Fλ−1 − V

Rule 1 (Creating a trivial node) To reduce the loop −aii < 0 to −1 at node i , every
arc entering i has weight divided by aii (Fig. 1a).

Note that there may be a loop at j in Fig. 1a, and that after reduction node i has a loop
with weight −1. This operation is equivalent to dividing row i of det(Fλ−1 − V) by
aii > 0, which multiplies the value of the determinant by 1/aii .

Rule 2 (Elimination of arcs through a trivial node) For a trivial node i on a path
j → i → k, the two arcs are replaced by j → k with weight equal to the product of
weights on arc j → i and i → k. Weights on multiple arcs j → k are added. If there
are no more paths through the trivial node i , then it can be disregarded. See Fig. 1b,
in which node i is not shown in the third digraph.

In this case if j is equal to k, then weights are added to the loop. This operation is
equivalent to the elementary Gaussian elimination that adds aki times row i to row k,
thus reducing the (k, i) entry to 0. This operations leaves the determinant unchanged.
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Fig. 1 Digraph reduction rules

4 Algorithm to compute R0 from the digraph associated with Fλ−1 − V

Using Theorem 1 and the two digraph reduction rules, we now give a symbolic
computation method to calculate R0. For a connected dynamical system, consider
the matrix Fλ−1 − V. If this matrix is irreducible, then draw the associated digraph
with arc j → i if and only if the (i, j) entry of the matrix is nonzero. If j = i and the
(i, i) entry is −1, then i is called a trivial node.

1. In the digraph choose a node i with a loop.
2. Use Rule 1 to make node i trivial.
3. Recalculate all paths going through node i using Rule 2. Node i can then be

disregarded.
4. Continue steps 1, 2, 3 until only one node remains.
5. Set the weight of this loop to zero giving an equation for λ. Then by Theorem 1,

R0 is the reciprocal of the smallest positive root of this equation.

Note that in implementation nodes other than i can also be made trivial at step 2,
but node i must be trivial before step 3 is performed. This algorithm is equivalent to
symbolic Gaussian elimination on det(Fλ−1 − V) = 0. If the digraph is not strongly
connected, then the algorithm can be applied to each strongly connected component.

5 Examples

5.1 Vector–host model

As an simple illustrative example, consider the vector–host model presented in [11].
The equations for a coupled SIS (host) and SI (vector) model are given by

d I

dt
= βs SV − (b + γ )I, (1)

dV

dt
= βm M I − cV, (2)
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d S

dt
= b − bS + γ I − βs SV, (3)

d M

dt
= c − cM − βm M I, (4)

where the compartments correspond to proportions of infective host (I ), infective vec-
tor (V ), susceptible host (S), and susceptible vector (M). For the host, b > 0 is the
birth and death rate constant, γ is the recovery rate constant; for the vector, c > 0 is the
birth and death rate constant. Cross infections have disease transmission coefficients
βs, βm . The disease free equilibrium is (0, 0, 1, 1)T , and

F =
(

0 βs

βm 0

)
, V =

(
b + γ 0

0 c

)
, (5)

with V non-singular. Figure 2 with nodes 1,2 representing I ,V , respectively, shows
the digraph representation of matrix Fλ−1 −V and the detailed digraph reduction pro-
cedure to obtain R0. Following the algorithm presented in Sect. 4, Fig. 2b is obtained
from Fig. 2a after choosing both node 1 and node 2 and applying Rule 1. Then apply
Rule 2, yielding the digraph shown in Fig. 2c, in which node 1 is not shown. Finally,
applying the last step of the algorithm and solving the quadratic equation gives

R0 =
√

βmβs

c(b + γ )
. (6)

Fig. 2 Graph reduction procedure applied to the vector–host model
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Fig. 3 Star topology for
travelling

The square root here indicates a geometric mean, and this basic reproduction number
gives a threshold for the vector-host model with the DFE linearly stable if R0 < 1 but
unstable if R0 > 1.

5.2 Star topology model

Consider an epidemiological model with n spatial patches in which susceptible (S),
exposed (E) , and recovered (R) people can travel going through a central hub. Infec-
tive people (I ) are too sick to travel. The topology of this system is a star with a center
patch and n − 1 patches around it as shown in Fig. 3. This star topology is suggested
for models of communities at nodes 2, 3, . . . , n that use a common hospital or school
at the center node 1. In [12] this topology (called spider) is used to describe the spread
of tuberculosis in possums moving between patches. The dynamics at the center (node
1 in Fig. 3) is given by

d S1

dt
= −β1S1 I1 + A1 − d1S1 + w1 R1 +

n∑
j=2

m1 j S j −
n∑

j=2

m j1S1, (7)

d E1

dt
= β1S1 I1 − (d1 + α1)E1 +

n∑
j=2

m1 j E j −
n∑

j=2

m j1 E1, (8)

d I1

dt
= α1 E1 − (d1 + ε1 + γ1)I1, (9)

d R1

dt
= γ1 I1 − (d1 + w1)R1 +

n∑
j=2

m1 j R j −
n∑

j=2

m j1 R1. (10)

Similarly for the patches j = 2, . . . , n

d S j

dt
= −β j S j I j + A j − d j S j + w j R j + m j1S1 − m1 j S j , (11)

d E j

dt
= β j S j I j − (d j + α j )E j + m j1 E1 − m1 j E j , (12)

d I j

dt
= α j E j − (d j + ε j + γ j )I j , (13)

d R j

dt
= γ j I j − (d j + w j )R j + m j1 R1 − m1 j R j . (14)
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For patch k = 1, 2, . . . , n, Ak > 0 is the constant input into the susceptible
compartment, dk > 0 is the natural death rate constant, εk is the disease induced
death rate constant, α−1

k is the mean latency period, γ −1
k is the mean infective period,

w−1
k is the mean period of temporary immunity, and βk is the disease transmission

coefficient assuming mass action incidence. In addition, m j1, m1 j > 0 are the rates of
travel from patch 1 to patch j , patch j to patch 1, respectively, and are assumed the same
for susceptible, exposed and recovered individuals. Here the variables Sk, Ek, Ik, Rk

denote the number of individuals in each compartment.
Since dk, Ak > 0, there exist a DFE (S̄k, 0, 0, 0) with S̄k = Ak/dk > 0, k = 1, . . . , n.

Linearizing around the DFE and taking Ek, Ik variables gives the coefficient matrix
F − V where F is a block diagonal matrix that can be written using the direct sum
symbol ⊕ as

F =
(

0 β1 S̄1

0 0

)
⊕

(
0 β2 S̄2

0 0

)
⊕ · · · ⊕

(
0 βn S̄n

0 0

)
, (15)

and

V =

⎛
⎜⎜⎜⎜⎝

V11 V12 V13 . . . V1n

V21 V22 0 . . . 0
... 0 0

. . .
...

Vn1 0 . . . 0 Vnn

⎞
⎟⎟⎟⎟⎠, (16)

where Vk� is a 2 × 2 block with

V11 =
(

d1 + α1 + ∑n
j=2 m j1 0

α1 d1 + ε1 + γ1

)
, (17)

V j j =
(

d j + α j + m1 j 0

α j d j + ε j + γ j

)
, (18)

V j1 =
(

−m j1 0

0 0

)
, V1 j =

(
−m1 j 0

0 0

)
, (19)

for j = 2, . . . , n.
The digraph of Fλ−1−V is shown in Fig. 4, here node 2i −1 represents Ei and node

2i represents Ii . Using the algorithm presented in Sect. 4, Fig. 5a shows the digraph
reduction procedure using Rules 1 and 2 so that nodes distance two from the center
node can be disregarded. Such nodes are not shown in the figures. Figure 5b shows the
procedure to make nodes 3, 5, . . . , 2n − 1 trivial, and Fig. 5c shows the use of Rule 2
so that these nodes can be disregarded. Finally, Fig. 5d shows Rules 1 and 2 applied,
leaving node 1 as the one remaining node. The final step of the algorithm gives the
following equation, which can in general be written as a polynomial of degree n for λ

(since the denominator in the last term is nonzero):
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Fig. 4 Digraph for Fλ−1 − V from (15)–(19)

0 = α1β1 S̄1

(d1 + ε1 + γ1)λ
−

⎛
⎝d1 + α1 +

n∑
j=2

m j1

⎞
⎠

+
n∑

j=2

⎡
⎣ m1 j m j1

(d j + α j + m1 j ) − α j β j S̄ j
(d j +ε j +γ j )λ

⎤
⎦. (20)

Then R0 can be found as the reciprocal of the smallest positive root of this poly-
nomial equation. Note that the systematic digraph reduction is easy to implement for
this topology, and avoids calculation of the inverse of the 2n × 2n matrix V needed
to calculate R0 = ρ(FV−1). No additional arcs in the digraph are created (i.e. there
is no fill-in, see, e.g., [9]) during the symbolic Gaussian elimination steps in the order
described above.

In the special case that there is no disease transmission in patches 2, . . . , n (i.e.
β j = 0 for j = 2, . . . , n), Eq. (20) gives R0 explicitly as

R0 = α1β1 S̄1

(d1 + ε1 + γ1)
[
d1 + α1 + ∑n

j=2 m j1 − ∑n
j=2

m1 j m j1
(d j +α j +m1 j )

] , (21)

showing how travel into and out of the patch with disease influences R0. This expres-
sion is an approximation in the case of a star topology with center node (e.g. hospital,
school) having much greater disease transmission than the other nodes. Equations (20)
and (21) can be used to determine the sensitivity of R0 to changes in parameter values,
as well as to calculate R0 from parameter estimates obtained from data.
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Fig. 5 Digraph reduction procedure for Fig. 4

5.3 West Nile virus model

In this example we use a model for West Nile virus (WNv) derived in [25], and later
simplified in [17]; see also [18]. The ODE equations for exposed and infective female
mosquitoes (EV and IV ), and infective birds (IR) from [18, Sect. 3.1] are
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d EV

dt
= αV βR

IR

NR
(NV − EV − IV ) − (κV + dV )EV , (22)

d IV

dt
= κV EV − dV IV , (23)

d IR

dt
= αRβR IV

NR − IR

NR
− (δR + γR)IR . (24)

Here the parameters are defined as follows [18]: dV is the mosquito death rate con-
stant, κ−1

V is the average mosquito latent time, δR is the bird disease-induced death
rate constant, βR is the biting rate of mosquitoes on birds, γ −1

R is the average bird
infective time, and αV , αR are the WNv transmission probabilities per bite to mosqui-
toes, birds, respectively. The mosquito and bird populations are NV and NR (assumed
constant), and the cross-infection disease transmission is modeled by mass action
incidence normalized by NR .

The digraph reduction procedure on the digraph of Fλ−1 − V for this system at
the DFE with SV = NV , SR = NR is detailed in Fig. 6 in which nodes that can be
disregarded are not shown. Note that there is a fill-in as the arc from IR to IV is not
present in Fig. 6a but has positive weight in Fig. 6c. Application of the last step in the
algorithm, yields the basic reproduction number

Fig. 6 WNv digraph reduction procedure
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R0 =
√

αV αRβ2
RκV NV

dV (κV + dV )(δR + γR)NR
. (25)

Now, consider the system in which birds can travel between neighboring pat-
ches. As an example, consider a network of three patches. The digraph of Fλ−1 − V
for this system is shown in Fig. 7. Each patch in the digraph in Fig. 7a is as shown in
Fig. 6 with migration of infective birds included. The biting rate βRi , i = 1, 2, 3, is
the only parameter that varies between patches. Different biting rates could occur in
patches with different vegetation density. Dense vegetation may provide wind cover
and increase the ability of a mosquito to land on a bird and therefore increase the biting
rate. Travel of infective birds from patch i to j is at rate m ji with m12, m21, m23, m32
the only positive rates. Reducing each patch to one node at IRi (as in Fig. 6c in which
nodes that are disregarded are not shown) gives Fig. 7b with

aii = δR + γR +
3∑

j=1

m ji − αRαV β2
RiκV

dV (κV + αV )

NV

NR
λ−2 > 0. (26)

Further reduction to node IR1 leads to Fig. 7c, in which the last step of the algorithm
gives

0 = −a11 + m21m12

a22 − m32m23
a33

, (27)

or equivalently,

− a11a22a33 + m21m12a33 + m32m23a11 = 0, (28)

which is a cubic polynomial in λ2. The reciprocal of the smallest positive root gives
a formula for R0.

This reduction procedure can be extended to any number of patches between which
birds travel. An alternative patchy model for the spread of WNv is considered in [20].

6 Discussion

Using a digraph reduction procedure, we give a new method for calculating R0 for
continuous time epidemiological models. This method applies to compartmental mod-
els that possess a DFE. The method is equivalent to symbolic Gaussian elimination.
Since the digraph reduction method avoids the direct calculation of a matrix inverse or
determinants, this method can be practical for large systems and is a good alternative to
the direct method. Consider for example the vector–host model presented in Sect. 5.1.
Because there are only two compartments, the traditional method might be more direct.
However, a quick inspection of Fig. 2 might also reveal the solution without having
to explicitly apply the graph reduction rules. For more complicated systems, like the
one presented in Sect. 5.2, the graph-theoretic method might be simpler to apply since
the matrix Fλ−1 − V has sparse structure.
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Fig. 7 Patch WNv reduction procedure

Each digraph in the reduction process corresponds to a model that is equivalent to the
original model as far as R0 is concerned. Since at any intermediate step in the digraph
reduction (with more than one node remaining), a loop at a vertex is negative, any
node with a loop with new infections (λ terms in the loop) gives lower bounds on R0.

For example, in the star topology model (Sect. 5.2), Fig. 5a for node 3 gives

R0 >
α2β2 S̄2

(d2 + ε2 + γ2)(d2 + α2 + m12)
. (29)

The numerator α2β2 S̄2 relates to the flow between nodes 3 and 4 in Fig. 4. The terms
(d2 + α2 + m12)

−1 and (d2 + ε2 + γ2)
−1 correspond to the the average time spent in

nodes 3 and 4, respectively.
As a second example, consider the patch WNv model presented in Sect. 5.3. The

digraph shown in Fig. 7b, corresponds to an intermediate step in the reduction of the
digraph in Fig. 7a. The self loop −aii at each node in Fig. 7b has aii given by Eq. (26),
from which the lower bounds
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R0 >

√√√√ αV αRβ2
RiκV NV

dV (κV + dV )
(
δR + γR + ∑3

j=1 m ji

)
NR

(30)

for i = 1, 2, 3 result. The difference between the basic reproduction number for the
single patch WNv (Eq. (25)) and the 3 patch model (Eq. (29)), lies in the patch outflow
(
∑3

j=1 m ji ) in the denominator.
The method presented here is analogous to the one in [3,4] for discrete systems

(also known as matrix population models). In a discrete system, the movement between
compartments is described as probabilities in discrete time steps as opposed to rates
in continuous-time epidemiological models. However, the digraph reduction proce-
dures are related. The examples presented show how the digraph reduction method
applied to large ordinary differential equation models can simplify the calculation of
the net reproduction number. Additionally, these examples illustrate that the interme-
diate digraph reduction steps can give lower bounds on R0 and also can assist in the
interpretation of the basic reproduction number.
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